Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Andrew Duthie, ${ }^{\text {a }}$ Peter Scammells, ${ }^{\text {a }}$ Andrew Katsifis ${ }^{\text {b }}$ and Edward R. T. Tiekink ${ }^{\mathrm{c} *}$

${ }^{\text {a }}$ Centre for Chiral and Molecular Technologies, Deakin University, Geelong, Victoria 3217, Australia, ${ }^{\mathbf{b}}$ Radiopharmaceuticals, ANSTO,
Private Bag 1, Menai, NSW 2234, Australia, and
${ }^{\text {c }}$ Department of Chemistry, The University of
Adelaide, Australia 5005

Correspondence e-mail:
edward.tiekink@adelaide.edu.au

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.039$
$w R$ factor $=0.139$
Data-to-parameter ratio $=15.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

(1,3-Benzo[d]dioxol-5-yl)(2-pyridyl)methyl cyanide

In the title compound, $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$, the dihedral angle formed between the substituted pyridine ring and 1,3-benzodioxole group is $67.73(6)^{\circ}$. The crystal features chains of molecules held together by alternating $\pi \cdots \pi$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.

Comment

The title compound, (I), is an intermediate in the synthesis of potential cocaine antagonists. It was prepared by a nucleophilic substitution reaction involving 2-bromopyridine and 1,3-benzodioxol-5-ylmethyl cyanide. The mean deviation of the atoms from the 1,3-benzodioxo group is $0.054 \AA$ with the major deviation of 0.100 (2) \AA associated with C2. The dihedral angle between this plane and that through the pyridyl group is $67.73(6)^{\circ}$. Molecules associate in the crystal to form chains held by alternating $\pi \cdots \pi$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions. Centrosymmetrically ($1-x, 1-y,-z$) related 1,3-benzodioxole groups are aligned so as to place the six-membered rings in close proximity. The distance separating the ring centroids is calculated to be 3.584 (2) \AA (Spek, 1990). These pairs are capped on each sides by a symmetry related H^{\prime} atom $(-x,-y,-z)$ which forms an interaction of the type $\mathrm{C}-\mathrm{H} \cdots \pi$ with the $\mathrm{C} 3 \mathrm{a}-\mathrm{C} 7$ a aromatic ring so that the $\mathrm{H} \cdots$ ring centroid separation is $2.73 \AA$ and the angle at H^{\prime} is 157°.

Experimental

To a stirred suspension of $1.12 \mathrm{~g}(46.5 \mathrm{mmol})$ of NaH in dry THF (30 ml) under dry argon gas was added a solution of 5.00 g (161.2 mmol) of 3,4-(methylenedioxy)phenylacetonitrile and 4.90 g (31.0 mmol) of 2-bromopyridine in dry THF (30 ml). The mixture was stirred at room temperature for 1 h and then at reflux overnight. After cooling, the THF was removed and water (50 ml) added while cooling in an ice bath. The aqueous layer was extracted with $3 \times$ 50 ml of EtOAc and the combined organic layer washed with water

Received 12 December 2000
Accepted 2 January 2001
Online 10 January 2001

Figure 1
The molecular structure of (I). Displacement ellipsoids are shown at the 50% probability level (Johnson, 1976).
and then extracted with $4 \times 30 \mathrm{ml}$ of 6 MHCl solution. The combined aqueous layer was adjusted to pH 11 with $15 \% \mathrm{NaOH}$ and extracted with $3 \times 50 \mathrm{ml}$ EtOAc. The organic layer was washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent removed in vacuo. Column chromatography with EtOAc-hexane (1:4) gave 5.83 g (79%) of the title compound as a pale yellow powder with m.p. 338$340 \mathrm{~K} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.22(1 \mathrm{H}, s), 5.94(2 \mathrm{H}, s), 6.78(1 \mathrm{H}, d), 6.87$ $(1 \mathrm{H}, d), 6.91(1 \mathrm{H}, d d), 7.24(1 \mathrm{H}, d d d), 7.36(1 \mathrm{H}, d), 7.69(1 \mathrm{H}, d d d)$, $8.59(1 \mathrm{H}, d d d) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 44.9,101.4,108.1,108.6,119.0$, 121.2, 121.8, 123.0, 128.2, 137.5, 147.7, 148.3, 149.9, 155.4. Analysis calculated for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$ (238.24): C 70.58, $\mathrm{H} 4.23 \%$; found: C 70.80, H 4.20%. ES-MS $[M+\mathrm{H}]^{+}=239.1$. Crystals were obtained from the slow evaporation of a CDCl_{3} solution of the compound.

Crystal data
$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2} \quad Z=2$
$M_{r}=238.25$
Triclinic, $P \overline{1}$
$a=8.851$ (2) \AA 。
$b=11.435$ (4) \AA
$c=5.831$ (1) \AA
$\alpha=94.42(2)^{\circ}$
$\beta=92.79(2)^{\circ}$
$\gamma=107.65(2)^{\circ}$
$V=559.1(3) \AA^{3}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.415 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 25 \\
& \quad \text { reflections } \\
& \theta=8.0-30.0^{\circ} \\
& \mu=0.10 \mathrm{~mm}^{-1} \\
& T=173 \mathrm{~K} \\
& \text { Block, colourless } \\
& 0.48 \times 0.48 \times 0.11 \mathrm{~mm}
\end{aligned}
$$

Data collection
Rigaku AFC-7R diffractometer

$$
h=-11 \rightarrow 11
$$

$\omega-2 \theta$ scans
2731 measured reflections
2564 independent reflections
1911 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.05$
$\theta_{\text {max }}=27.5^{\circ}$
$k=-14 \rightarrow 14$
$l=0 \rightarrow 7$
3 standard reflections every 400 reflections intensity decay: 0.2%

Refinement

Refinement on F^{2}
$R(F)=0.039$
$w R\left(F^{2}\right)=0.139$
$S=1.05$
2564 reflections
163 parameters

H -atom parameters not refined $w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.1 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.25$ e \AA^{-3}
$\Delta \rho_{\min }=-0.25 \mathrm{e}^{-3}$

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1996); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1997-1999); program(s) used to solve structure: SIR97 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: TEXSAN.

The Australian Research Council is thanked for support.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Molecular Structure Corporation (1996). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1997-1999). TEXSAN for Windows. Version 1.05. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (1990). Acta Cryst. A46, C-34.

